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Outline

• We consider a construction assigning to every poset P a
compact space SP, the spectrum.
• The intention is that elements p ∈ P correspond to basic open

sets of SP, and the order relation corresponds to containment.
• We may also start with a compact space X and its open basis
P, and ask when X can be reconstructed as SP.

Theorem
Every metrizable compact space X can be reconstructed from the
poset structure of any countable basis {Bn : n ∈ ω} such that
diam(Bn)→ 0.



Outline

• An abstract poset P is often obtained from a sequence of
finite graphs (Gn,⊓n) and bonding relations ⊏n : Gn+1 → Gn
by taking the disjoint union

⊔
n Gn and letting ≤ be the

transitive closure of
⊔

n ⊏n.
• Such posets are called graded ω-posets.
• The intention is that p ⊓ q in Gn iff the corresponding basic

open sets in SP overlap.
• Then we can reason about SP using directly the properties of

the finite graphs (Gn,⊓n) and of the bonding relations ⊏n.



Comparison to inverse sequences

• A more common approach to build compact spaces from
inverse sequences of graphs and homomorphisms is to
consider quotients of inverse limits.
• The inverse limit approach is used in the context of projective

Fraïssé theory introduced by Irwin and Solecki (which is one
of our motivations), and also in the context of constructing
topologically complete spaces from so called cell structures
(Dębski and Tymchatyn).
• Given a an inverse sequence G0

f0← G1
f1← G2

f2← · · · of finite
graphs ⟨Gn,⊓⟩ and ⊓-preserving maps, the inverse limit is the
compact space G∞ := {x ∈

∏
n Gn : ∀n xn = fn(xn+1)}

together with the closed relation x ⊓ y :⇐⇒ ∀n xn ⊓ yn.
• If the relation ⊓ turns out to be transitive, the quotient G∞/⊓

is a compact metrizable space.



Comparison to inverse sequences

• Given a an inverse sequence G0
f0← G1

f1← G2
f2← · · · of finite

graphs ⟨Gn,⊓⟩ and ⊓-preserving maps, the inverse limit is the
compact space G∞ := {x ∈

∏
n Gn : ∀n xn = fn(xn+1)}

together with the closed relation x ⊓ y :⇐⇒ ∀n xn ⊓ yn.
• If the relation ⊓ turns out to be transitive, the quotient G∞/⊓

is a compact metrizable space.
• It is typically not the case that G∞/⊓ ∼= SP where P :=

⊔
n Gn

is the induced poset.
• However, we may put G ′

n to be the set of all maximal cliques
of size ≤ 2 in Gn (i.e. edges and isolated points),
⊏′ : G ′

n+1 → G ′
n to be the refinement relation, and

P′ :=
⊔

n G ′
n.

Theorem
If every element of G∞ is ⊓-related to at most one other element,
then G∞/⊓ ∼= SP′.



Application: Fraïssé limits
• Our goal is to represent certain well-known spaces as Fraïssé

limits of the following form.
• We take a category C of desired graphs and desired

co-bijective relational morphisms.
• We prove that the category C is directed and has the

amalgamation property, so that there exists an essentially
unique Fraïssé sequence ((Gn),⊏n).
• We consider the induced atomless graded ω-poset P :=

⊔
n Gn

and its spectrum SP.
• We prove that “nice” morphisms form a wide ideal in C, so

there is a Fraïssé sequence consisting of “nice” morphisms,
and so P is well behaved.
• Namely, SP is Hausdoff, P faithfully represents its basis, and

overlaps of basic open sets correspond to the edge relations ⊓.
• We examine further properties of SP coming from C, and using

a suitable topological characterization we identify the space SP.



Application: Fraïssé limits – examples

graphs co-bijective morphisms SP

discrete all (⇔ surjective functions) Cantor space
paths monotone arc
paths all pseudo-arc
fans root-monotone end-preserving Cantor fan
fans root-monotone Lelek fan

[We are still working on proofs of some of these.]



Our construction

1 (abstract basic) open sets
• We start with a poset P.

2 (abstract) open covers
• For B,C ⊆ P we write B ≤ C for ∀b ∈ B ∃c ∈ C b ≤ c.
• A band is a finite set B ⊆ P such that for every p ∈ P there is

b ∈ B with p ≤ b or b ≤ p.
• A cap is a set C ⊆ P such that B ≤ C for some band B.

3 points
• A selector is a set S ⊆ P such that S ∩ C ̸= ∅ for every cap C .
• The spectrum SP consists of ⊆-minimal selectors.
• Note that every selector contains a minimal selector.

4 topology
• For every p ∈ P we put p∈ := {S ∈ SP : p ∈ S}.
• We endow SP with the topology generated by the sets p∈.



Properties of the spectrum

For any poset P:
• SP is a compact T1 space.
• Every minimal selector S is upwards closed.
• {p∈ : p ∈ P} is an open subbasis for SP.
• Every set C ⊆ P is a cap iff {c∈ : c ∈ C} covers SP.

For P an ω-poset:
• SP is second countable.
• Every two caps C ,C ′ have a common refinement D ≤ C ,C ′.
• Every minimal selector S is a filter.
• {p∈ : p ∈ P} is an open basis for SP.

For P a regular ω-poset (defined later):
• SP is Hausdorff, and so metrizable.



Examples

• For P = 2<ω (the full binary tree), SP is the Cantor space.
• For P consisting of a chain p0 > p1 > · · · together with an

antichain pn > qn+1, n ∈ ω, SP is the convergent sequence
ω + 1.
• For P consisting of two chains p0 > p1 > · · · , p′

0 > p′
1 > · · ·

together with an antichain pn, p′
n > qn+1, n + 1, SP is the

non-Hausdorff convergent sequence with two limits.
• For P = B \ {0} where B is an atomless Boolean algebra, SP

is just a singleton – bands are exactly finite subsets containing
the top element.
• For P = B \ {0} where B is the finite-cofinite algebra on P(κ),

SP is the one-point compactification of the discrete space κ.



ω-Posets
• For p ∈ P we define the rank r(p) := supq>p(r(q) + 1).
• P is an ω-poset if

• r(p) is well-defined and finite for every p ∈ P,
• every set {p ∈ P, r(p) ≤ n} is finite.

• An ω-poset is graded if for every p ≤ q and n ∈ [r(q), r(p)]
there is r ∈ [p, q] with r(r) = n.
• Graded ω-posets come from sequences of sets (Gn)n with

total relations ⊏n : Gn+1 → Gn by putting P :=
⊔

n Gn and
letting ≤ be the transitive closure of

⊔
n ⊏n.

• Then we have r(p) = n iff p ∈ Gn.
• We may turn Gns into graphs by putting p ⊓ q if ∃r ≤ p, q.
• Then the relations ⊏n are ⊓-preserving and reflecting.

...



Reconstruction of spaces

• A cap-basis of a (necessarily compact) T1 space X is a basis P
such that every C ⊆ P that covers X is a cap (the other
implication always holds).

Theorem
• If P is a cap-basis of a T1 space X , then x 7→ {p ∈ P : x ∈ p}

is a homeomorphism X → SP.

• Every second countable compact T1 space X has a cap-basis
P that is a graded ω-poset.
• Every second countable compact T1 arises as a spectrum.



Reconstruction of spaces

Theorem
Let P = {Bn : n ∈ ω} be a basis of non-empty open subsets of a
compact metrizable space X . Then P is a cap-basis and an
ω-poset if and only if diam(Bn)→ 0.

Example
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Regularity
• p ≤ q vs. p∈ ⊆ q∈:

• ⇒ is always true,
• ⇐ holds iff P is cap-determined, i.e. for every p ≰ q there is a

(finite) cap C such that (C \ {p}) ∪ {q} is not a cap.
• Every cap-basis is a cap-determined poset.

• ∃r ≤ p, q vs. ∃S ∈ p∈ ∩ q∈:
• ⇐ holds if P is an ω-poset,
• ⇒ holds if P is prime, i.e. for every p there is a (finite) cap C

such that C \ {p} is not a cap, equivalently p∈ ̸= ∅.
• Every cap-determined P is prime.

• p ◁ q vs. cl(p∈) ⊆ q∈:
• We define p ◁ q if Cp ≤ q for some cap C

where Cp is the star {c ∈ C : ∃r ≤ c, p}.
• ⇒ holds if P is an ω-poset,
• ⇐ holds if P is a prime ω-poset.

• P regular vs. SP Hausdorff:
• We say that P is regular if every cap C is ◁-refined by a cap D.
• ⇒ holds if P is an ω-poset,
• ⇐ holds if P is a prime ω-poset.



Categories of graphs

• A graph is a finite set G with a symmetric reflexive relation ⊓.
• A morphism ⊏ : G → H is a ⊓-preserving relation.
• A co-bijective morphism ⊏ is

1 co-surjective (“total”): ∀g ∈ G , ∃h ∈ H : g ⊏ h,
2 surjective: ∀h ∈ H, ∃g ∈ G : g ⊏ h,
3 co-injective (“subfunctional”): ∀h ∈ H, ∃g ∈ G : g⊏ = {h}.

• A “nice” morphism ⊏ is co-bijective and
4 anti-injective: ∀h ∈ H : |h⊐| ≥ 2,
5 star-refinining: ∀g ∈ G , ∃h ∈ H : g ′ ⊓ g ⇒ g ′ ⊏ h,
6 witnessing: ∀h ⊓ h′ ∈ H, ∃g ∈ H : g ⊏ h, h′.

• An inverse sequence ((Gn),⊏n) in a graph category is turned
into an ω-poset P :=

⊔
n Gn where ≤ is generated by

⊔
n ⊏n.

• 1 assures that P is graded,
• 2 assures that P is atomless,
• 3 and 4 assure that P is cap-determined,
• 5 assures that P is regular,
• 6 assures that the graph structure is reconstructed from P.



Further research: maps and dynamics

• We have obtained some projetive Fraïssé limits as spectra of
graded ω-posets coming from Fraïssé sequences of finite
graphs and bonding relations.
• How about generic automorphisms?
• A refiner is a relation ⊏ : P→ Q such that every cap in Q is

refined by a cap in P.

Theorem
If ⊏ : P→ Q and ⊏′ : Q→ P are refiners such that ⊏′ ◦ ⊏ ⊆ ≤P
and ⊏ ◦ ⊏′ ⊆ ≤Q, then SP ∼= SQ.

Thank you.


